Quantitating tertiary binding energies of 2' OH groups on the P1 duplex of the Tetrahymena ribozyme: intrinsic binding energy in an RNA enzyme.

نویسندگان

  • G J Narlikar
  • M Khosla
  • N Usman
  • D Herschlag
چکیده

Binding of the Tetrahymena ribozyme's oligonucleotide substrate (S) involves P1 duplex formation with the ribozyme's internal guide sequence (IGS) to give an open complex, followed by docking of the P1 duplex into the catalytic core via tertiary interactions to give a closed complex. The overall binding energies provided by 2' OH groups on S and IGS have been measured previously. To obtain the energetic contribution of each of these 2' OH groups in the docking step, we have separately measured their contribution to the stability of a model P1 duplex using "substrate inhibition". This new approach allows measurement of duplex stabilities under conditions identical to those used for ribozyme binding measurements. The tertiary binding energies from the individual 2' OH groups include a small destabilizing contribution of 0.7 kcal/mol and stabilizing contributions of up to -2.9 kcal/mol. The energetic contributions of specific 2' OH groups are discussed in the context of considerable previous work that has characterized the tertiary interactions of the P1 duplex. A "threshold" model for the open and closed complexes is presented that provides a framework to interpret the energetic effects of functional group substitutions on the P1 duplex. The sum of the tertiary stabilization provided by the conserved G x U wobble at the cleavage site and the individual 2' OH groups on the P1 duplex is significantly greater than the observed tertiary stabilization of S (11.0 vs 2.2 kcal/mol). It is suggested that there is an energetic cost for docking the P1 duplex into the active site that is paid for by the "intrinsic binding energy" of groups on the P1 duplex. Substrates that lack sufficient tertiary binding energy to overcome this energetic barrier exhibit reduced reactivities. Thus, the ribozyme appears to use the intrinsic binding energy of groups on the P1 duplex for catalysis. This intrinsic binding energy may be used to position reactants within the active site and to induce electrostatic destabilization of the substrate, relative to its interactions in solution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A role for a single-stranded junction in RNA binding and specificity by the Tetrahymena group I ribozyme.

We have investigated the role of a single-stranded RNA junction, J1/2, that connects the substrate-containing P1 duplex to the remainder of the Tetrahymena group I ribozyme. Single-turnover kinetics, fluorescence anisotropy, and single-molecule fluorescence resonance energy transfer studies of a series of J1/2 mutants were used to probe the sequence dependence of the catalytic activity, the P...

متن کامل

Nonspecific binding to structured RNA and preferential unwinding of an exposed helix by the CYT-19 protein, a DEAD-box RNA chaperone.

We explore the interactions of CYT-19, a DExD/H-box protein that functions in folding of group I RNAs, with a well characterized misfolded species of the Tetrahymena ribozyme. Consistent with its function, CYT-19 accelerates refolding of the misfolded RNA to its native state. Unexpectedly, CYT-19 performs another reaction much more efficiently; it unwinds the 6-bp P1 duplex formed between the r...

متن کامل

Direct demonstration of the catalytic role of binding interactions in an enzymatic reaction.

It has been suggested that the fundamental feature that distinguishes enzymes from simple chemical catalysts is the ability of enzymes to use binding interactions for catalysis. Results with the Tetrahymena group I RNA enzyme described herein directly demonstrate the catalytic contributions of binding interactions. With wild-type ribozyme, specific functional groups at a distance from the site ...

متن کامل

Characterization of a local folding event of the Tetrahymena group I ribozyme: effects of oligonucleotide substrate length, pH, and temperature on the two substrate binding steps.

Binding of the Tetrahymena group I ribozyme's oligonucleotide substrate occurs in two steps: P1 duplex formation with the ribozyme's internal guide sequence which forms an "open complex" is followed by docking of the P1 duplex into tertiary interactions within the catalytic core which forms a "closed complex". By systematically varying substrate length, pH, and temperature, we have identified c...

متن کامل

Evidence for processivity and two-step binding of the RNA substrate from studies of J1/2 mutants of the Tetrahymena ribozyme.

J1/2 of the Tetrahymena ribozyme, a sequence of three A residues, connects the RNA-binding site to the catalytic core. Addition or deletion of bases from J1/2 improves turnover and substrate specificity in the site-specific endonuclease reaction catalyzed by this ribozyme: G2CCCUCUA5 (S) + G in-equilibrium G2CCCUCU (P) + GA5. These paradoxical enhancements are caused by decreased affinity of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 36 9  شماره 

صفحات  -

تاریخ انتشار 1997